Información de la revista
Vol. 98. Núm. 9.
Páginas 603-610 (noviembre 2007)
Vol. 98. Núm. 9.
Páginas 603-610 (noviembre 2007)
Original articles
Acceso a texto completo
Repigmentation of Gray Hair After Thyroid Hormone Treatment
Repigmentación del Pelo Canoso Tras Tratamiento Con Hormona Tiroidea
Visitas
16866
P. Redondoa,
Autor para correspondencia
predondo@unav.es

Correspondence: Departamento de Dermatología. Clínica Universitaria de Navarra. 31008 Pamplona. Spain.
, M. Guzmánb, M. Marquinaa, M. Pretela, L. Aguadoa, P. Lloreta, A. Gorrochateguic
a Departamento de Dermatología, Clínica Universitaria de Navarra, Pamplona, Spain
b Área de Terapia Celular, Clínica Universitaria de Navarra, Pamplona, Spain
c Clínica Dermatológica, Bilbao, Spain
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract
Introduction and objectives

Darkening of gray and white hairs occurred in 2 patients with increased exogenous triiodothyronine (T3) due to treatment of myxedema coma in one case and iatrogenic hyperthyroidism in the other. We hypothesized that thyroid hormone may affect the homeostasis of hair follicles. To test our hypothesis and investigate the influence of thyroid hormone on the hair cycle, we used an in vivo murine model and an in vitro model based on culture of follicular units.

Methods

We used the standard C57BL/6 murine model of the hair cycle. T3 (0.5 #mg) dissolved in ethanol was applied topically once daily for 10 days to a depilated area in the telogen phase on the backs of the mice. Follicular units, obtained from hair transplant interventions, were cultured in vitro with different concentrations of T3.

Results

On day 5, all T3-treated mice entered the anagen phase, whereas the anagen phase started spontaneously in control mice on day 9, and not until day 15 had all controls entered this phase. In the in vitro experiment, follicular units treated with 100 nmol/L T3 grew significantly larger compared to the control group.

Conclusions

These data suggest that follicles in the telogen phase can be induced to enter the anagen phase by the topical application of T3. In the in vitro experiments, T3 stimulated hair shaft growth. Follicular melanocytes may be the target cell for these actions.

Key words:
thyroid hormone
hair follicle
melanocytes
mice
Resumen
Introducción y objetivos

Basándonos en dos pacientes con oscurecimiento de sus canas que sufrieron una elevación exógena de T3, debida a un coma mixedematoso y a una descompensación de su enfermedad, sugerimos que la hormona tiroidea puede tener un efecto en la homeostasis del folículo piloso. Para ello se utilizan un modelo animal de ratón y un modelo de cultivo in vitro de unidades foliculares, con el objeto de valorar la influencia de la hormona tiroidea en el ciclo capilar.

Métodos

Sobre un modelo de ratón estandarizado para el estudio del ciclo capilar (C57BL/6), aplicamos tópicamente T3 (0,5 μg) disuelta en etanol una vez al día durante 10 días en el dorso de ratones depilados en fase de telogen. Cultivamos in vitro unidades foliculares, obtenidas de cirugía capilar, con diferentes concentraciones de T3.

Resultados

In vivo, al quinto día del tratamiento el 100% de los ratones estudiados entraron en anagen, mientras que en el grupo control se apreció un inicio del anagen el día 9, que no se completó en todos los ratones hasta el día 15. In vitro, las unidades foliculares tratadas con 100 nM de T3 crecieron de forma significativa respecto al grupo control.

Conclusiones

Estos datos sugieren que los folículos en telogen pueden estimularse para entrar en anagen tras la aplicación tópica de T3. Esta hormona puede revertir el encanecimiento del pelo terminal. En cultivo, la administración de T3 estimula el crecimiento del tallo piloso. Los melanocitos foliculares podrían ser la célula diana para estas acciones.

Palabras clave:
hormona tiroidea
folículo piloso
melanocitos
ratones
El Texto completo está disponible en PDF
References
[1.]
D.J. Tobin, R. Paus.
Graying: gerontobiology of the hair follicle pigmentary unit.
Exp Gerontol, 36 (2001), pp. 29-54
[2.]
C.J. Rosen, M.F. Holick, P.S. Millard.
Premature graying of hair is a risk marker for osteopenia.
Clin Endocrinol Metab, 79 (1994), pp. 854-857
[3.]
A.B. Lerner.
Gray hair and sympathectomy. Report of a case.
Arch Dermatol, 93 (1966), pp. 235-236
[4.]
J.P. Ortonne, J. Thivolet, R. Guillet.
Graying of hair with age and sympathectomy.
Arch Dermatol, 118 (1982), pp. 876-877
[5.]
D.J. Tobin, J.C. Bystryn.
Different populations of melanocytes are present in hair follicles and epidermis.
Pigment Cell Res, 9 (1996), pp. 304-310
[6.]
N.V. Botchkareva, V.A. Botchkarev, B.A. Gilchrest.
Fate of melanocytes during development of the hair follicle pigmentary unit.
JID Symp Proc, 8 (2003), pp. 76-79
[7.]
R. Paus, G. Cotsarelis.
The biology of hair follicles.
N Engl J Med, 341 (1999), pp. 491-497
[8.]
D.J. Tobin, E. Hagen, V.A. Botchkarev, R. Paus.
Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)?.
J Invest Dermatol, 111 (1998), pp. 941-947
[9.]
N.V. Botchkareva, M. Khlgatian, B.J. Longley, V.A. Botchkarev, B.A. Gilchrest.
SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit.
FASEB J, 15 (2001), pp. 645-658
[10.]
S. Müller-Röver, B. Handjiski, C. van der Veen, S. Eichmüller, K. Foitzik, I.A. McKay, et al.
A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages.
J Invest Dermatol, 117 (2001), pp. 3-15
[11.]
R.C.D. Staughton.
Neoplasms of the scalp.
The color atlas of hair and scalp disorders, pp. 59
[12.]
A. Robinson, W. Jones.
Changes in scalp hair after cancer chemotherapy.
Eur J Cancer Clin Oncol, 25 (1989), pp. 155-156
[13.]
M.P. Philpott, M.R. Green, T. Kealey.
Human hair growth in vitro.
J Cell Sci, 97 (1990), pp. 463-471
[14.]
K. Takada, K. Sugiyama, I. Yamamoto, K. Oba, T. Takeuchi.
Presence of amelanotic melanocytes within the outer root sheath in senile white hair.
J Invest Dermatol, 99 (1992), pp. 629-633
[15.]
J. Verbov.
Erosive candidiasis of the scalp, followed by the reappearance of black hair after 40 years.
Br J Dermatol, 105 (1981), pp. 595-598
[16.]
W.B. Bean.
A note on post inflammatory hair darkening.
Arch Dermatol, 79 (1959), pp. 681-683
[17.]
H. Pinkus.
Postinflammatory hair darkening.
Arch Dermatol, 82 (1960), pp. 155-156
[18.]
B.F. Sieve.
Darkening of grey hair following para-amino benzoic acid.
Science, 94 (1941), pp. 257-302
[19.]
G.M. Read.
Verapamil and hair colour change.
Lancet, 338 (1991), pp. 1520
[20.]
J.P. Hampson, A. Donnelly, M.S. Lewis-Jones, J.K. Pye.
Tamoxifen-induced hair colour change.
Br J Dermatol, 132 (1995), pp. 483-484
[21.]
A. Rebora, S. Delmonte, A. Parodi.
Cyclosporin A-induced hair darkening.
Int J Dermatol, 38 (1999), pp. 229-230
[22.]
J.L. Vesper, N.A. Fenske.
Hair darkening and new growth associated with etretinate therapy.
J Am Acad Dermatol, 34 (1996), pp. 860
[23.]
N.J. Reynolds, J. Crossley, I. Ferguson, R.D.G. Peachey.
Darkening of white hair in Parkinson's disease.
Clin Exp Dermatol, 14 (1989), pp. 317-318
[24.]
M. Wand.
Latanoprost and hyperpigmentation of eyelashes.
Arch Ophtalmol, 115 (1997), pp. 1206-1208
[25.]
L. Juhlin, J.P. Ortonne.
Red scalp hair turning dark brown at 50 years of age.
Acta Derm Venereol (Stockh), 66 (1986), pp. 71-73
[26.]
L.S. Hill.
Reversal of premature hair greying in adult coeliac disease.
Br Med J, 281 (1980), pp. 115
[27.]
F.C.G. Shaffrali, A.J.G. McDonagh, A.G. Messenger.
Hair darkening in porphyria cutanea tarda.
Br J Dermatol, 146 (2002), pp. 325-329
[28.]
R.K. Freinkel, N. Freinkel.
Hair growth and alopecia in hypothyroidism.
Arch Dermatol, 106 (1972), pp. 349-352
[29.]
A.G. Messenger.
Thyroid hormone and hair growth.
Br J Dermatol, 142 (2000), pp. 631-635
[30.]
N. Billoni, B. Buan, B. Gautier, O. Gaillard, Y. Mahé, B.A. Bernard.
Thyroid hormone receptor (beta) 1 is expressed in the human hair follicle.
Br J Dermatol, 142 (2000), pp. 645-652
[31.]
C.C. Thompson, M.C. Bottcher.
The product of a thyroid hormone responsive gene interacts with thyroid hormone receptors.
Proc Natl Acad Sci USA, 94 (1997), pp. 8527-8532
[32.]
M.K. Ahsan, Y. Urano, S. Kato, H. Oura, S. Arase.
Immunohistochemical localization of thyroid hormone nuclear receptors in human hair follicles and in vitro effect of L-triiodothyronine on cultured cells of hair follicles and skin.
J Med Invest, 44 (1998), pp. 179-184
[33.]
J.D. Safer, L.M. Fraser, S. Ray, M.F. Holick.
Topical triiodothyronine stimulates epidermal proliferation, dermal thickening, and hair growth in mice and rats.
Thyroid, 11 (2001), pp. 717-724
[34.]
J.D. Safer, T.M. Crawford, L.M. Fraser, M. Hoa, S. Ray, T.C. Chen, et al.
Thyroid hormone action on skin: diverging effects of topical versus intraperitoneal administration.
Thyroid, 13 (2003), pp. 159-165
[35.]
K.M. Credille, M.R. Slater, K.A. Moriello, R.F. Nachreiner, K.A. Tucker, R.W. Dunstan.
The effects of thyroid hormones on the skin of beagle dogs.
J Vet Inter Med, 15 (2001), pp. 539-546
[36.]
T. Soma, Y. Tsuji, T. Hibino.
Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle.
J Invest Dermatol, 118 (2002), pp. 993-997
[37.]
T. Kawakami, Y. Soma, Y. Kawa, M. Ito, E. Yamasaki, H. Watabe, et al.
Transforming growth factor beta 1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.
J Invest Dermatol, 118 (2002), pp. 471-478
[38.]
P. Burger, P.T. Lukey, S. Coetzee, E.L. Wilson.
Basic fibroblast growth factor modulates the expression of glycophorin A and c-kit and inhibits erythroid differentiation in K562 cells.
J Cell Physiol, 190 (2002), pp. 83-91
[39.]
E.M.J. Peters, D.J. Tobin, N. Botchkareva, M. Maurer, R. Paus.
Migration of melanoblasts into the developing murine hair follicle is accompanied by transient c-kit expression.
J Histochem Cytochem, 50 (2002), pp. 751-766
[40.]
Y. Tsuji, S. Denda, T. Soma, L. Raftery, T. Momoi, T. Hibino.
A potential suppressor of TGF-beta delays catagen progression in hair follicles.
JID Symp Proc, 8 (2003), pp. 65-68
[41.]
H. Niepomniszcze, R.H. Amad.
Skin disorders and thyroid diseases.
J Endocrinol Invest, 24 (2001), pp. 628-638
[42.]
L. Hegedus, M. Heidenheim, M. Gervil, H. Hjalgrim, M. Hoier-Madsen.
High frequency of thyroid dysfunction in patients with vitiligo.
Acta Derm Venereol, 74 (1994), pp. 120-123
[43.]
K. Gharami, S. Das.
Thyroid hormone-induced morphological differentiation and maturation of astrocytes are mediated through the beta-adrenergic receptor.
J Neurochem, 75 (2000), pp. 1962-1969
[44.]
D.N. Hu, D.F. Woodward, S.A. McCormick.
Influence of autonomic neurotransmitters on human uveal melanocytes in vitro.
Exp Eye Res, 71 (2000), pp. 217-224
[45.]
K.U. Schallreuter.
Beta-adrenergic blocking drugs may exacerbate vitiligo.
Br J Dermatol, 132 (1995), pp. 168-169
[46.]
M. Ichimiya.
Immunohistochemical study of ACTH and alpha-MSH in vitiligo patients successfully treated with a sex steroidthyroid hormone mixture.
J Dermatol, 26 (1999), pp. 502-506
[47.]
T. Horikawa, D.A. Norris, T.W. Johnson, T. Zekman, N. Dunscomb, S.D. Bennion, et al.
DOPA-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosome-associated glycoproteins tyrosinase, TRP-1, and TRP-2.
J Invest Dermatol, 106 (1996), pp. 28-35
Copyright © 2007. Academia Española de Dermatología y Venereología and Elsevier España, S.L.
Descargar PDF
Idiomas
Actas Dermo-Sifiliográficas
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?